IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Stick: an End-to-End Encryption Protocol Tailored for
Social Network Platforms

This paper is published in an IEEE Journal — Transactions on Dependable and
Secure Computing.

You can access the IEEE version from here.

Sticky Sessions

IESC 2ok

Re-establishable multi-device group encryption
sessions with forward & backward secrecy

Figure - Stick Protocol teaser image

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/9716793

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Stick: an End-to-End Encryption Protocol
Tailored for Social Network Platforms

Omar Basem, Abrar Ullah, and Hani Ragab Hassen

Abstract—End-to-End Encryption (E2EE) has become a de facto standard in messengers, especially after the development of the
secure messaging protocol — Signal. However, the adoption of E2EE has been limited to messengers, and has not yet seen a
noticeable trace in social network platforms, despite the increase in users’ privacy violations. In this paper, we propose, verify,
implement and evaluate a novel E2EE protocol — Stick. Stick is a Signal-based protocol tailored for social network platforms. We
believe our protocol is the first to support re-establishable encryption sessions in an asynchronous multi-device setting while preserving
forward secrecy and introducing backward secrecy. Stick includes several innovative features, including a new session concept,
multiple pairwise sessions and refreshing identity keys. We verified Stick using Verifpal - a formal verification tool in the symbolic
model. Our security analysis shows our protocol does achieve a form of post-compromise security in many-to-many communications —
the trait most group protocols lack. Most importantly, the Stick protocol can re-establish encryption sessions while ensuring
authentication and confidentiality. We implemented our protocol as a stand-alone open-source API. Our evaluation shows the Stick
protocol can be used in a real-world social network app with no noticeable compromise on usability or performance.

Index Terms—End-to-End Encryption, Security Protocol, Formal Verification, Social Network Platforms

1 INTRODUCTION

OCIAL network platforms (SNPs) have been rapidly

developing, making us more connected than ever. Their
pace of evolution is accelerating and is not slowing down
anytime soon as we head into the era of virtual reality. While
these technological advances have revolutionized how we
communicate, they have left our privacy more exposed to
an increasing number of threats. These threats range from
data mining and data selling to phishing attempts and iden-
tity theft. They also stem from different parties including
hackers, Internet service providers, and application service
providers. Recently, there have been multiple data leaks as-
sociated with social networking, i.e., Facebook-Cambridge
Analytica data scandal in 2018, in which the personal data
of over 80 million Facebook users’ were leaked [1]. Such
incidents have led to an increased demand for secure com-
munications. A potential solution is using E2EE in SNPs.
But, what are the challenges for using E2EE in SNPs?

E2EE is being used for several applications from securing
networking channels using SSL/TLS to private communi-
cations in messengers to signing digital certificates. All of
these applications can be summarized under one main use
case: Establishing an end-to-end (E2E) encrypted short-term
session between two parties for authenticity verification
and/or exchanging data. A short-term session means that
it does not require long-term persistence nor the ability
to be re-established. For all of these kinds of applications
establishing a new encryption session whenever needed is
not a problem. In addition, the focus is always on commu-
nications between two parties only. This has limited the
usage of E2EE protocols to short-term sessions between
two parties. Using these short-term sessions in an SNP to

o The authors are with the Department of Mathematical and Computer
Sciences, Heriot-Watt University, United Kingdom.
Email: founder@sticknet.org, {A.Ullah, H.RagabHassen J@hw.ac.uk

provide E2EE would not work. In the case of modern E2E
encrypted messengers, when Alice wants to start chatting
with Bob, she would create an E2E encrypted session with
Bob. If Alice is going to use another device or re-installs the
messenger application, she can create a new session with
Bob. This will result in both of them being unable to decrypt
any previously sent messages. In practice, these messages
are usually deleted from the server anyway once received,
so there is no way to redecrypt those messages. However,
this behavior in messengers is acceptable. Indeed, it is the
desired behavior as normally the recipient would not need
to decrypt your message more than once. In contrast, this
behavior would be problematic on SNPs. If Alice shared a
photo on an SNP, then a month later she wanted to reinstall
the app, she would expect every photo she has shared or
was shared with her to still be there and be able to decrypt it
again. Also, Alice should be able to view these photos from
other available devices using her account. As a result, using
E2EE in an SNP was never practically feasible. Building on
that, we regard our contributions as follows:

o We solve the above problem by designing an E2EE
protocol tailored for SNPs. The protocol can re-establish
E2EE sessions, while preserving Signal’s forward se-
crecy and introducing backward secrecy.

« Our protocol introduces the following security features:
(i) Multiple pairwise sessions for backward secrecy of
exchanging re-establishable session keys. (ii) Encryption
sessions life cycle for many-to-many (M2M) communica-
tions post-compromise security. (iii) Double-Hashing for
complete hiding of the user’s password. (iv) Refreshing
Identity Keys to self-heal from long-term keys leakage.

o We formally verify the proposed protocol in the sym-
bolic model using Verifpal to prove that it is able to
achieve its security properties.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

e We implement the proposed protocol as iOS and An-
droid libraries, in addition to a server library and a
client-handlers library.

o We evaluate the proposed protocol to provide valida-
tion supporting the fact that using the Stick protocol in
an SNP does not compromise usability or performance.

The rest of the paper is organized as follows. Section 2
provides background information about the Signal protocol,
in addition to the related work. In section 3 we propose
our design of the Stick protocol. We formally verify the
protocol in section 4. Section 5 gives a brief overview of the
Stick protocol’s implementation. We evaluate the protocol’s
performance in section 6. In section 7, we discuss the pro-
tocol’s main outcomes, limitations and future work. Lastly,
we conclude our work in section 8.

2 RELATED WORK

Given the complexity of Signal protocol, we aim through
this section to give a brief overview on it, without going
into deep details. The Signal Protocol is known to be one of
the most secure E2EE protocols. Initially, it was introduced
in the messaging app TextSecure, which later became known
as Signal. Over 2 billion people use the Signal protocol
everyday, as it is the protocol used to E2E encrypt What-
sApp messages [2]. The Signal protocol uniqueness can be
accredited to the following 2 assets:

e The Extended Triple Diffie-Hellman (X3DH) Key
Agreement Protocol [3].
o The Double Ratchet Algorithm (DRA) [4].

2.1 The X3DH Key Agreement Protocol

The X3DH protocol creates a shared secret key between two
parties wishing to establish a secure communication session,
through 4 DH calculations. X3DH is designed to be used in
asynchronous environments where Alice uses pre-uploaded
information by Bob to create a shared secret.

There are 3 parties involved in the X3DH protocol: Alice,
Bob and a server. Alice wants to create a shared secret key
with Bob that both can use to exchange messages. Bob wants
to let other parties such as Alice start a conversation with
him and create a shared secret key, even when Bob is offline.
The server can keep messages that Alice has sent Bob, until
Bob gets online. Also, the server can store data from Bob
which can be provided to parties like Alice when needed.

A user has 3 types of keys. Identity key (IK): a long-
term identifying key. Signed prekey (SPK): used for signing,
changes periodically. One-time prekey (OPK): every user
would have a set of one-time prekeys.

The X3DH protocol goes through 3 phases. (i) Uploading
Keys: Bob publishes his set of public keys mentioned above
to the server. (ii) Sending the first message: Alice fetches
a prekey bundle (PKB) of Bob, which consists of Bob’s
IK, SPK, and one of Bob’s OPK. Alice will generate an
ephemeral key EK and carry out 4 DH calculations as shown
in Fig. 1, then generates the secret key XK defined as XK =
KDF(DH1 || DH2 || DH3 || DH4). Mutual authentication is
provided by DH1 and DH2, while DH3 and DH4 assure
forward secrecy. DH4 can be omitted if Bob ran out of
his pre-uploaded one-time prekeys. (iii) Receiving the first

2
IKA IKs
\DH‘
DH2
/
EKa — DH3 SPKs
DH4 |-
" OPKs

Fig. 1. X3DH Key Agreement

message: Bob extract’s from the initial message Alice’s IK,
EK and identifiers referring to which of his keys Alice has
used to create XK. Bob carries out DH and KDF calculations
like Alice to calculate XK, then decrypt the ciphertext. X3DH
is now complete for Alice and Bob. They may keep using XK
or keys derived from XK for subsequent communications
within some post-X3DH protocol.

2.2 The Double Ratchet Algorithm

After 2 parties have carried out X3DH to agree on a shared
secret, they can use DRA as a post-X3DH protocol for
subsequent messages. For every Double Ratchet message,
the parties derive new keys from a symmetric-key ratchet
preventing the calculation of earlier keys from subsequent
ones (forward secrecy). In addition, the symmetric ratchet is
combined with a DH ratchet, which is used to derive DH
outputs. These outputs are combined with the keys derived
from the symmetric ratchet preventing the calculation of
subsequent keys from earlier ones (backward secrecy).

2.3 Signal Protocol Group Messaging

Group messages in the Signal protocol build on the pairwise
encrypted sessions explained above and use server-side fan-
out to send the message to all members of a group. This is
accomplished using Sender Keys (SKs). The first time Alice
wants to send a message to a group:
1) Alice generates a Chain Key — a random 32-byte key.
2) Alice generates a Signature Key Pair.
3) Alice combines the Chain Key and the public key of the
Signature Key to make an SK.
4) Alice individually encrypts the SK to every group mem-
ber using Signal’s pairwise sessions.
Then, for subsequent messages Alice sends to the group:
1) Alice derives a Message Key from the Chain Key, and
updates the Chain Key — 1 Symmetric-key ratchet step.
2) Alice encrypts the message using AES256-CBC.
3) Alice signs the ciphertext using her Signature Key.
4) Alice sends the encrypted message to the server which
does server-side fan-out.
You may have noticed that there is no Double Ratchet here,
but only a single ratchet. This provides forward-secrecy
without backward secrecy. This is true for almost all current
group messaging protocols at the moment.

2.4 Towards E2EE for Social Network Platforms

To our best knowledge, fully E2E encrypted SNPs do not
exist. Therefore the amount of research that has been done

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

on E2EE for SNPs specifically is scarce. Most of the research
that has been done regarding privacy in SNPs revolves
around private messaging or leveraging the users’ privacy
by means other than E2EE. This subsection presents some
of the related work in that sense.

Blum et. al [5] present a design for how Zoom's commu-
nications are E2E encrypted. The most significant contribu-
tion in their proposal is what they call "transparency tree".
It is a methodology that forces Zoom servers to sign and
immutably store mappings between a user and their public
keys, and provide these mapping to all clients for signing,
which builds a “transparency tree” similar to those used
by CA (Certificate Authorities). This methodology helps
protect against identity spoofing. However, Zoom relies
on an elementary secret key establishment mechanism that
involves a single DH calculation. This makes it vulnerable
for an attacker to break the secret key, in comparison to
X3DH, where there are more keys involved to break.

Cohn-Gordon et al. [6] have an interesting paper where
they are addressing the above drawback of the Signal pro-
tocol in group messaging, which is having no backward
secrecy. They proposed a protocol design that provides both
forward-secrecy and backward-secrecy in group messaging
using Asynchronous Ratcheting Trees (ART) which uses
tree-based Diffie-Hellman key exchange to let members of
a group create a shared secret key without needing to be
online at the same time. However, their design would work
only for a messenger app, and not for an SNP app that
would require re-establishable sessions.

Barenghi et al.’s [7] proposal is closely related to our
research work. They are proposing an E2E encrypted SNP
as a single-page HTML5 JavaScript application. However,
their work has some crucial security flaws. Their approach
is protecting every account with a single master key which
creates a major threat to the users. If an adversary broke the
master key of an account, they would be able to retrieve all
of the user’s other keys and data. In addition, the master key
is derived from the user’s password using an outdated key
derivation function PBKDF2, and with 1000 iterations only
which is way below the recommended minimum number
of iterations (10,000) by the National Institute of Standards
and Technology (NIST) [8]. Their secret key establishment
relies on a question/answer pair. This makes the encryption
key weaker, as it is not based on a random function. Group
messaging uses one symmetric key, which again would be
easier to break. Lastly, their proposal offers no advanced
security features, such as: forward secrecy or backward
secrecy.

Multiple papers [9], [10], [11] have proposed decentral-
ized architectures as a means of keeping the users’ data
private. A decentralized system has no control over the
day-to-day activities happening on the system making it
difficult to achieve global big tasks. Also, it is not easy to
find malicious and failing nodes. Moreover, in a decentral-
ized system, you have no control over the performance of
the system, unlike in a centralized system where you can
boost your system computing power on-demand at times
of high traffic. In addition, [10], [11] do not employ any
cryptographic methods to protect the user’s data claiming
security through the isolation of data. Isolation does not
guarantee security nor privacy. It may protect the users from

3

the service providers, but in case an attacker got access to
the data it will be available for them in plaintext.

We can see that none of the above proposals were actu-
ally an E2EE protocol for SNPs. In addition, the mainstream
SNPs we have today, such as Facebook and Twitter, none of
them uses E2EE for the platform content. Building on that,
this paper is proposing an E2EE protocol - the Stick protocol
- that is specifically designed for SNPs.

3 STIicK PROTOCOL DESIGN

We present our protocol design through a use case descrip-
tion that considers a social network SN with the criteria de-
tailed below. On SN, Alice has a userld, partyld, phoneNumber
(or email) and a password. Also, Alice would be connected to
a number of connections (friends) and a number of groups.
When sharing a post Alice can choose to share with one
of the following parties: (i) A particular group, (ii) Selected
group(s) and/or connection(s), or (iii) Her profile (self-party,
which includes all of Alice’s connections). Alice is currently
a member of 3 groups - G1, G2 and G3. Alice wants to share
photo A with G1, photo B with both of GI and G2, and
photo C with everyone she is connected with (her profile).
Alice will share these photos from her device X. Now, there
are 5 main requirements that Alice needs:

1) Alice wants every photo to be E2E encrypted to the
designated party.

2) Alice wants to be able to view the photos she has shared
from her device X on her other device Y.

3) If Alice reinstalls the SN application, she wants to still
be able to view any photos she has previously shared
or was shared with her, i.e., not lose any data, unlike
the case with E2EE messaging protocols.

4) Alice wants to still benefit from the security features of
the Signal protocol.

5) Alice is interested in extra security features on top of
what is provided by the Signal protocol.

3.1 Preliminaries

As discussed in section 1, using common messaging pro-
tocols, such as the Signal protocol for an SNP would be
problematic. If Alice shared a photo on SN, and then a
month later she wanted to reinstall the application, she
would expect every photo she has shared or was shared
with her to still be there and be able to decrypt it again —
and not be gone. Also, Alice should be able to view these
photos from any other device using her account. The Stick
protocol solves this problem by using sticky sessions (not
referring to sticky sessions of load balancers — discussed
in section 3.1.1.) while preserving the security features of
Signal protocol. Moreover, the Stick protocol provides extra
security advantages regarding M2M encryption.
User-Specific Key Types:
o Identity Keys: a key pair of type Curve25519 generated
at registration time, periodically refreshed.
o Signed Prekeys: a signed key pair of type Curve25519
generated at registration time, periodically refreshed.
o Omne-Time Prekeys: a list of key pairs of type Curve25519
generated at registration time. Refilled as needed.

Session Key Types:

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

e Encryption Sender Key (ESK): consists of a 32-byte Chain
Key and a Curve25519 Signature Key Pair. Acts as the
root key of a sender’s symmetric-key ratchet.

o Decryption Sender Key (DSK): consists of a 32-byte Chain
Key and a Curve25519 Signature Public Key. Acts as the
root key of a receiver’s symmetric-key ratchet.

e Chain Key: a 32-byte key used to derive Message Keys.

e Message Key: an 80-byte key that encrypts messages
(posts). It consists of an AES-256 key, an HMAC-
SHAZ256 key, and 16 bytes for padding.

Other Terms

e Collection: a mix of groups and/or connections.

e Party: can be one of 3 — a group, a collection or self-party.

e One Encryption: an encryption of a photo, video, com-
ment, notification, status or any other data that needs
to be E2E encrypted between a user and a party.

STATE RESET

Given an E2E encrypted application SN, STATE RESET is
an event that occurs when a user re-installs SN wiping all
the encryption sessions they had, or when installing SN on
another device having to establish new encryption sessions,
and being unable to decrypt the previously encrypted data.

3.2 The Stick Protocol
3.2.1 User Registration

At registration time, Alice would generate an IK, an SPK
and a list of OPKs. Alice would then transmit the public
credentials of her keys to the server. The server would store
those keys associated with Alice’s identifiers, assign a userld
and a partyld to Alice and return those IDs to her.

3.2.2 Sticky Sessions Overview

A sticky session is an E2E encrypted session between a user
and a party that can be re-established after STATE RESET
in an asynchronous multi-device environment, and keeps
track of the ratcheting Message Keys while preserving forward
secrecy and introducing backward secrecy.

3.2.3 Re-establishing Sessions

As discussed in section 2.3 about group messaging, when
Alice wants to share her sender key SKI of a group GI
with Bob, she would establish a normal Signal pairwise
encrypted session with Bob, then encrypt SKI to Bob. Bob
will not be able to decrypt SK1 after STATE RESET unless
he establishes the same encryption session with Alice which
she used to encrypt that key. In order to be able to re-
establish the same session, the private keys of the IKs, SPKs
and OPKs will be backed up encrypted with the help of
Argon2, arguably the most secure hashing algorithm and
the winner of the PHC (Password Hashing Competition)
in 2015 [12]. Argon2 summarizes the state of the art in the
design of memory-hard functions and can be safely used to
hash passwords for private credentials storage. Alice or Bob
can encrypt a private key for backup as follows:

1) The user generates a securely random 32-byte salt.

2) The user generates a securely random 16-byte IV.

3) The user creates a secret hash of their password using

Argon2 with the salt.

4

4) The user uses the produced secret hash to encrypt the
private key using AES256 in CBC mode.
5) The user pads the produced cipher using IV.

After that, the user can securely back up a private key, and
no one else including the server may decrypt their key.
Similarly, a user can decrypt their private key by extracting
IV, creating the secret hash again, then decrypting the cipher.
Now, Bob will be able to re-establish the same session he had
with Alice at any time in the future and decrypt SK1.

3.2.4 Multiple Pairwise Sessions

At this point, Bob will not be able to re-establish every
single session he has had with Alice, but the first session
only. Signal pairwise sessions have backward secrecy where
no later key can be derived from a previous key, i.e., when
Bob re-establish a session he will be able to decrypt the first
message (SK1) only. So, if Alice encrypted to Bob another
sender key SK2 of group G2, Bob will not be able to decrypt
SK2 or any subsequent SKs. To solve this problem, the Stick
protocol allows two users to establish together multiple
pairwise sessions. So, a Signal pairwise session will be used
to encrypt one SK only. The next SK will be encrypted using
a fresh pairwise session. This allows two users after STATE
RESET to re-establish as many sticky sessions as they had
before STATE RESET, while keeping the forward secrecy
and backward secrecy of exchanging SKs.

3.2.5 Session Life Cycle

In Signal protocol group messaging, users change their
SK only when the group’s membership changes, or when
reinstalling the app, otherwise they will keep using the same
SK till no end. This causes zero backward secrecy in group
messaging. If an eavesdropper intercepted one message key
of a sender, they will be able to find every message key
of that sender in the future. The Stick protocol solves this
problem by having a life cycle for its sticky sessions. A sticky
session has a life cycle of N Encryptions (ex.: 100 Encryptions).
After N Encryptions, the session will go from an active state
to a freeze state. A sticky session in freeze state cannot be used
for more Encryptions, but it can still be used for decryptions
as the message keys are saved into the session’s internal
state on the user’s device.

3.2.6 Creating Sticky Sessions and Encrypting Data

Whenever Alice wants to make an Encryption she needs to
provide the stickld, a sticky session id.
stickld = (targetPartyld || activeChainld)

To find the stickld, Alice will send a request to the server
that includes the list of connections and groups she wishes
to share a post with. Fig. 2 shows the algorithm for creat-
ing sticky sessions and encrypting data. It goes through 3
phases. Phase A of the algorithm presents how to determine
the stickld. The server returns to Alice the stickld, target
party members that do not have Alice’s sender key for that
particular sticky session, and its currentStep. In phase B,
Alice can check whether she already has a sticky session
on her device associated with that stickld and create one
if needed, encrypt her SK to the list of users individually
using Signal’s pairwise sessions, and upload her encrypted
SKs to the server. Finally, in phase C, Alice can derive a new

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

@ Phase A: Finding the stickld

groupslds

connectionslds | [nput from user to server

Phase B: Sharing Sender
Keys

Phase C: Encrypting

plaintext

selfPartyld

selfPartyld == null

partyld =
selfPartyld

ength(groupslds) == 1 AND
length(connectionslds) ==

iNo

party =

Session(

ntUserld)

stickld

}

msgKey = ratchetChain(stickld)

cr
stickld, currel

getParty(groupslds,
connectionslds)

partyld = groupld

‘ initializePairwiseSession(memberld) ‘

partyld =
createParty(groupslds,
connectionslds).id

activeSK =
getActiveSK(partyld,
currentUser)

sk = encryptSK(stickld,
memberld, curentUserld) l
encryptedSKs.append(sk)

upload(encryptedSKs)

saveMsgKeylIntoState (msgKey)

encrypt(plaintext, stickld, msgKey) «——

|

ciphertext
currentStep

’syncChain(stickld, currentStep) ‘

chainld = activeSK.chainld + 1
currentStep = 0

chainld = activeSK.chainld
currentStep = activeSK.step

stickld = partyld Il chainld

The default value of N is 100, but it can be tuned by the developer. The lesser the
value of N, the more frequently future secrecy will be restored, but also the more

frequently OPKs will be used up. Also, N needs to be large enough to handle the

memberslds =
usersWithoutSK(stickld,
currentUser)

stickld
—> memberslds
currentStep,

different use cases of an app. For instance, if an app allows its users to share up
to 50 photos in one post, then N should not be less than 50.

Fig. 2. Algorithm Flowchart 1: Creating Sticky Sessions and Encrypting Data

message key, encrypt the data, save the new state of the
sticky session, and upload the encrypted data (along with
the new currentStep).

3.2.7 Refreshing Identity Keys

A compromise of a user’s IK can have a devastating effect
on the security of future communications. An attacker with
a user’s private IK can impersonate the compromised user.
Within the Signal protocol, if a user finds out that their
private IK has been compromised, they can replace their
IK by reinstalling the app. However, a compromised user
may never find out that their private IK has been leaked. To
mitigate this, the Stick protocol refreshes the IK every while.
Similar to SPKs, a user can have multiple IKs where only
one is active. Every encrypted SK will have an associated IK
id from the receiver. This allows the receiver to know which
of their IKs was used to encrypt that SK.

3.2.8 Password Security

Double-Hashing (not referring to the collision resolving tech-
nique). In the Stick protocol, the user’s private keys are
backed up encrypted using secret keys derived from pass-
word hashes. Also, the password is used within a two-
factor authentication. Although typically servers do not
store plaintext passwords, only hashes, the user should not

be forced to trust the server. In addition, since the user’s
password is used in backing up their private keys, therefore,
the user’s password should never be sent to the server, as
this can make it vulnerable to attacks by eavesdroppers
or even the server itself. To avoid such attacks, the Stick
protocol uses double-hashing, where the password is hashed
on the user’s device to create an Initial Password Hash (IPH)
before being sent to the server. The server will treat the [IPH
as the plaintext password, and will rehash it. The server will
store the resultant double-hashed password as the password
hash. That way, the server can verify the user’s password
without it leaving their device.

Storing Passwords. Every while, the user would need to
refill their store of OPKs whenever it goes below a certain
threshold. While doing so, they would also need to back
up the corresponding private keys encrypted using secret
keys derived from the password. Obviously, the user cannot
be asked to enter their password every time this process
needs to happen. Therefore, the password must be stored
somewhere on the user’s device securely.

The Stick protocol employs E2E encrypted sensitive
storage APIs from the underlying operating system (OS)
to securely store the user’s password persistently, such as
Keychain API on iOS [13]. If the underlying OS does not
support an E2E encrypted sensitive storage API, then an

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Phase A:
Fetching Keys

verifyUserldentity()

v Phase B: Re-establishing
Sticky Sessions

Return IPH_salt

l

? Phase C: Decrypting

cipherObj

|

stickySessionExists(cipherObyj.stickld)

IPH = hash(password, IPH_salt)

v |
doubleHashedPass = hash(IPH, salt)
No
D

l Yes

Return IKs, SPKs, OPKs, ESKs

‘ setActivelK(ESKslj].IK_id) |

l

| key = decryptSenderKey(ESK[j])

Requests to the server that first needs
verification by some specific piece of
data are marked with a blue shield
while processing steps where there is
decryption happening are marked with
a golden key. You can see that for
Alice to decrypt ciphertext after STATE l
RESET she had to go through 4

decryption processes, and pass 3
barriers. This emphasizes the security
of the Stick protocol. l

‘ setActivelK(currentlK_id) ‘

initializeStickySession(key)

ratchetChain(key.stickld,
key.currentStep)

=

e

Yes @

lNo

fetchSenderKey(cipherObj.stickld,
cipherObj.senderld, currentUserld)

verifyUserlsInParty()

markAsPending(stickld)

Return DSK

l

key = decryptSenderKey(DSK)

l

initializeStickySession(key)

!

decrypt(senderld, stickld,
cipherObj.text)

}

Plaintext

Fig. 3. Algorithm Flowchart 2: Re-establishing Sticky Sessions and Decrypting Data after STATE RESET

alternative solution is to encrypt the password using an
AES256 key, then store the ciphertext with the user’s OS
account, and store the key with the user’s SN application
account. That way only the user and no one else - including
the OS provider and the application service provider — can
access the password. Storing the user’s password persis-
tently would also help the user recover it if they forgot it.

3.2.9 Decryption After STATE RESET

Fig. 3 shows the algorithm of re-establishing sticky sessions
and decrypting data after STATE RESET. It goes through 3
phases. In phase A, firstly, Alice needs to verify her identity
(ex.: phone). If verified, the server returns the IPH salt. Alice
will create and send the IPH, then the server will use it to
create the double-hash. If verified, the server returns to Alice
her keys. Moving to phase B, Alice will decrypt the private
keys of her IKs, SPKs and OPKs as discussed in section
3.2.3. Then, Alice will decrypt her ESKs, initialize her sticky
sessions, and ratchet each chain to its currentStep. Finally,
in phase C, when Alice needs to decrypt some data which

she has not re-established its sticky session yet, she fetches
the corresponding DSK from the server, initializes the sticky
session, then decrypts the data (if the key does not exist, it
will be marked as pending where the sender is notified that
they should encrypt that SK to Alice).

3.3 Reflecting Back: Use Case Problem Solved!

Alice can share photo A with group G1 using its id as the
stickld, and photo B with both of groups G1 and G2 using
the partyld associated with that collection as the stickld, and
photo C to her profile using her own partyld as the stickld.
All of Alice’s photos will be E2E encrypted to the desig-
nated parties. Alice can view her posts after reinstalling the
application or from another device through the procedure
shown in fig. 3. Alice still benefits from the security features
of the Signal protocol, such as X3DH. Sharing SKs has
perfect forward secrecy and perfect backward secrecy using
multiple pairwise sessions. In addition, sharing posts using
sticky sessions provides perfect forward secrecy as well as
backward secrecy every N Encryptions at max.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

4 FORMAL VERIFICATION

Throughout this work, we were aiming to have the develop-
ment and implementation of the Stick protocol done hand-
in-hand with the formal security analysis. To help us in
achieving this, we used Verifpal [14], a modern formal cryp-
tographic verification tool, designed with a more intuitive
language, in order to bring development and verification
closer together. Verifpal is inspired by the two-decades-old
formal verification tool - ProVerif. Verifpal is based on the
Dolev-Yao model which is the most well-known modeling
technique for verifying cryptographic protocols [15].

4.1 Threat Model

Threat models vary for different protocols. For the Stick
protocol, we consider the following threats:

o Untrusted Network: The attacker will have control over
the network, and hence can intercept and tamper with
data sent over the network. In addition, we treat the
server of the application service provider as untrusted.

o Malicious Principals: The attacker controls a set of valid
protocol participants, for whom it knows the long-
term secrets. The attacker may advertise any IK for
its controlled principals. It may even pretend to own
someone else’s IK.

o User Keys Compromise: The attacker may compromise a
particular user to obtain any of their keys.

o Session State Compromise: The attacker may compromise
a user device to obtain the full session state at some
intermediate stage of the protocol.

4.2 Analysis in Verifpal

To verify cryptographic protocols using verification tools
like Verifpal, the protocol is broken down into several
smaller models, where each model represents a scenario. In
each Verifpal scenario, firstly we define whether the model
is going to be analyzed under a passive or active attacker.
Secondly, we define the different principals taking part in
that protocol model other than the attacker, for example: Al-
ice, Bob and Charlie. Then, we need to describe the messages
being communicated between the different principals across
the network. Finally, we ask Verifpal our queries which we
would like to test, for example, confidentiality of a message.

4.2.1 Scenario 1: Exchanging Sender Keys

Here, we are trying to verify the authenticity and confiden-
tiality of pairwise sessions in the Stick protocol which are
used to communicate the sticky sessions” SKs. Fig. 4 shows
a Verifpal model of a pairwise session in the Stick protocol,
which essentially is a Signal pairwise session. At the end
of the model, we have two queries which we would like to
test. First, we want to verify the authenticity of msg1 (an SK)
that it really came from Alice. Second, we want to verify
msgl confidentiality. So firstly, we start by declaring Alice
and Bob. Alice has an IK, and Bob has an IK, SPK and
OPK. Alice will fetch a PKB of Bob, and initiate a session
with him by deriving a master secret aMasterSec, and then
the root key aRK1 for her sending chain. Next, Alice will
encrypt msgl to Bob after carrying out the Double Ratchet,
and send it. In order for Bob to decrypt msg1, he will derive

attacker[active] // Declare an active attacker
principal Alice[
knows private alkPriv // Alice private IK
alkPub = G"alkPriv // Alice public IK
]
principal Bob|[
knows private blkPriv, bSpkPriv // Bob privIK & SPK
generates bOpkPriv // Bob private OPK
bIkPub = G"bIkPriv // Bob public IK
bSpkPub = G"bSpkPriv // Bob public SPK
bOpkPub = G*bOpkPriv // Bob public OPK
bSig = SIGN(bIkPriv, bSpkPub) // Bob’s signature

]
// Alice fetches Bob’s prekey bundle
Bob —> Alice: [bIkPub], bSig, bSpkPub, bOpkPub
principal Alice[
generates aEk1Priv // Alice ephemeral key
aEk1Pub = G~aEk1Priv
/ / Derive the master secret & then root key aRK1
aMasterSec = HASH(bSpkPub"alkPriv , blkPub”aEk1Priv,
bSpkPub " aEk1Priv, bOpkPub”~aEk1Priv)
aRK1, aCkBAl = HKDF(aMasterSec, nil, nil)
]
principal Alice[// Encrypting msgl
generates msgl, aEk2Priv // Generates msgl & eph. key
aEk2Pub = G"aEk2Priv // Ephemeral public key
/ / Verify Bob'’s signature
valid = SIGNVERIF (bIkPub, bSpkPub, bSig)?
aDH1 = bSpkPub”aEk2Priv // DH output for the DH ratchet
/ / Derive new root and sending chain keys
aRK2, aCkABl = HKDF(aDHI, aRKl, nil)
/ / Derive msg key aMK1
aCkAB2, aMkl = HKDF(MAC(aCkAB1, nil), nil,
msglEnc = AEAD ENC(aMkl, msgl, HASH(alkPub,
bIkPub, aEk2Pub))// Encrypt msgl

nil)

]
// Alice sends encrypted msg to Bob
Alice —> Bob: [alkPub], aEklPub, aEk2Pub, msglEnc
principal Bob[// Bob derive’s master secret and root key
bMaster = HASH(alkPub"bSpkPriv, aEklPub”blkPriv,
aEk1Pub "bSpkPriv, aEk1Pub”bOpkPriv)
brkbal, bckbal = HKDF(bmaster, nil, nil)

]

principal Bob[// Bob decrypts msgl
bDH1 = aEk2Pub”bSpkPriv
bRKAB1, bCkABl1 = HKDF(bDHI1, brkbal, nil)
bCkAB2, bMkl = HKDF(MAC(bCkAB1, nil), nil, nil)
msglDec = AEAD DEC(bMkl, msglEnc, HASH(alkPub,
blkPub, aEk2Pub))

]
phase[1]
principal Alice[leaks alkPriv]
principal Bob[leaks bIkPriv, bSpkPriv]
queries|[
authentication? Alice —-> Bob: msglEnc
confidentiality? msgl

Fig. 4. Pairwise Session Verifpal Model

the master secret, then decrypt msg1 after carrying out the
Double Ratchet as well. Finally, we would like to declare that
at some point in the future Alice and Bob will have their IK
and SPK private keys leaked. We use phases to express this
(phases allow Verifpal to reliably model post-compromise
security properties such as forward secrecy or backward
secrecy).

Our 2 queries passing Verifpal’s analysis prove that
whenever Alice sends an SK to Bob, no one can decrypt
it other than Bob, or tamper with it, and it must have
come from Alice. Moreover, if their pairwise session is
compromised, the SK will stay confidential.

4.2.2 Scenario 2: Sharing a Photo in a Sticky Session

In this scenario, we would like to verify the confidentiality
and authenticity of Alice sharing a photo with Bob and
Charlie in a sticky session. We want to query both of the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

knows private
knows private

aSigPub = G*aSigPriv

aChainKey
aSigPriv

generates photo

generates ephAES, ephMAC
photoEnc = ENC(ephAES, photo)
photoMac = MAC(ephMAC, photoEnc)

blobSec = CONCAT (ephAES, ephMAC, photoMac)
T

chainKey2, messageKey
nil), nil, nil)

blobSecEnc = ENC(messageKey, blobSec)
blobSecSigned = SIGN(aSigPriv, blobSecEnc)

= HKDF (MAC (aChainKey,

[aSigPub], blobSecEnc, blobSecSigned, photoEnc

knows private aChainKey

chainKey2B, messageKeyB = HKDF(MAC(aChainKey, nil), nil, nil)
_ = SIGNVERIF(aSigPub, blobSecEnc, blobSecSigned)?
blobSecDec = DEC(messageKeyB, blobSecEnc)

ephAESb, ephMACb, photoMacb = SPLIT(blobSecDec)
_ = ASSERT(MAC(ephMACb, photoEnc), photoMacb)?
photoDecB = DEC(ephAESb, photoEnc)

[aSigPub], blobSecEnc, blobSecSigned, photoEnc

knows private aChainKey

chainKey2C, messageKeyC = HKDF(MAC(aChainKey, nil), nil, nil)
_ = SIGNVERIF(aSigPub, blobSecEnc, blobSecSigned)?
blobSecDec2 = DEC(messageKeyC, blobSecEnc)

ephAESc, ephMACc, photoMacc = SPLIT(blobSecDec2)
_ = ASSERT(MAC(ephMACc, photoEnc), photoMacc)?
photoDecC = DEC(ephAESc, photoEnc)

| leaks chainKey2

—

Fig. 5. Sticky Session Verifpal Model

photo and its blob secret. We assume that Alice has already
sent her SK to Bob and Charlie. Figure 5 shows a Verif-
pal model diagram for better visualization of the process.
Looking at Fig. 5, Alice has her SK, which is composed
of a chain key and a signature key pair. Alice will first
encrypt the photo file using an ephemeral AES256 key and
an ephemeral HMAC-SHA256 key. Then, Alice will ratchet
her chain to obtain a message key, encrypt the blob secret
and sign it. Alice will send the encrypted data to Bob
and Charlie (since we are assuming that Alice has already
communicated her SK, Alice’s public signature key aSigPub
is guarded with [], and Bob and Charlie already knows the
chain key aChainKey). Both Bob and Charlie will derive the
message key, verify the signature, and decrypt the blob
secret. Then, they will verify the encrypted photo file and
decrypt it. At last, we assume that Alice leaks her current
chain key chainKey?.

This scenario had 6 queries for the authenticity of the
blob secret and the photo file from Alice to Bob and Charlie,
in addition to their confidentiality. These queries passing
prove that whenever Alice shares a photo with a party, its
members will be able to verify that both of the blob secret
and the photo are from Alice. Also, only the members of that
party will be able to decrypt the blob secret and the photo.
Moreover, if Alice ever leaks her chain key it will not affect
the secrecy of her past communications (forward secrecy).

4.2.3 Scenario 3: Re-establishing Sessions

Here, we want to prove the confidentiality of the backed-up
private keys, and user’s password, which is a key part of
decrypting the ciphered private keys. Alice has 2 devices,
and has created her account on device-1 and wants to access
her content on device-2. Looking at Fig. 6, we initialize device-
1 with IK, SPK, OPK and a password. In practice, Alice has

one password, but here alicePass?2 is used so that we can have
a different hash within Verifpal. Alice will create a secret
key (in practice, derived secret keys are unique) and the
IPH using the PW_HASH function (can be used to represent
Argon2 hashing within Verifpal). Alice will use the secret
key to encrypt her private keys. Alice can now safely send
her encrypted private keys to the server. The server will
hash again the IPH creating a double-hashed password. Now,
Alice wants to log in from her device-2. Alice will create the
IPH, send it to the server. The server will create a double-
hashed password and verify it, then return to Alice her keys.
Alice will recreate the secret key and decrypt the ciphered
private keys. Now that Alice has gotten her keys on device-2,
she can re-establish any pairwise sessions she has had, then
re-establish her sticky sessions by decrypting any SKs that
were sent to her (like in Scenario 1).

This scenario queried about the confidentiality of the
private keys and the password. Successful verification of
these queries shows that Alice was able to get back her
private keys on device-2, where no one other than Alice was
able to decrypt those keys. Also, her password stayed secret
and never left any of her devices.

4.2.4 Scenario 4: Sticky Session Backward Secrecy

Sticky sessions have a lifecycle of N Encryptions. This pro-
vides backward secrecy every N Encryptions at max. In this
scenario, we aim to test sticky sessions’ backward secrecy.
Looking at Fig. 7, we start by initializing Alice having an
SK for a sticky session X. At some point, Alice will have her
chain key leaked. When Alice’s sticky session X reaches the
end of its lifecycle it will expire, and Alice will create a new
sticky session Y. Using sticky session Y, Alice will share a
post with Bob. Bob will verify and decrypt the post (again
assuming Alice has already communicated her SK).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

|

knows private ikPriv, spkPriv, opkPriv
ikPub = GAikPriv

spkPub = GAspkPriv

opkPub = GropkPriv

knows password alicePass

knows password alicePass2

secretKeyDl = PW_HASH(alicePass)
hashedPassD1 = PW_HASH(alicePass2)
ikPrivEnc = ENC(secretKeyDl, ikPriv)
spkPrivEnc = ENC(secretKeyDl, spkPriv)
opkPrivEnc = ENC(secretKeyDl, opkPriv)

hashedPassD1, ikPrivEnc, ikPub, spkPrivEnc,
spkPub, opkPrivEnc, opkPub

Server

Device2

doubleHashedPass = PW_HASH(hashedPassD1)

knows password alicePass
knows password alicePass2
hashedPassD2 = PW_HASH(alicePass2)

hashedPassD2

_ = ASSERT(doubleHashedPass, PW_HASH(hashedPassD2))?

Fig. 6. Re-establishing Sessions Verifpal Model

We queried for authenticity and confidentiality of postY.
The queries passing Verifpal’s analysis prove the backward
secrecy of sticky sessions every a max of N Encryptions.

4.3 Analysis Conclusion

This section has provided formal security analysis of the
Stick protocol. We opted to use Verifpal - which can be
understood by a wider audience, and help us develop and
verify the protocol simultaneously. Doing so has helped us
detect some flaws in the design which we successfully fixed
during the development of the protocol. While a protocol
being analyzed and verified using formal verification tools
does not guarantee protection against all possible attacks, it
helps to eliminate certain well-defined classes of attacks.

Our analysis has shown that the Stick protocol provides
useful security properties under a variety of adversarial
compromise scenarios. The protocol is able to provide back-
ward secrecy in M2M communications, the trait most group
protocols lack. Moreover, the Stick protocol can securely re-
establish pairwise sessions and thus sticky sessions. Being
able to securely re-establish encryption sessions is the goal
towards having E2EE in SNPs. Also, our analysis featured
verification of Signal’s pairwise sessions. Although they
have been verified in a few papers before using ProVerif
[16], our analysis included a Verifpal model verifying the
authenticity and confidentiality of Signal’s pairwise sessions
for exchanging sticky sessions” SKs. And most importantly,
we verified the authenticity and secrecy of communications
(including blob files) within sticky sessions. The verification
process has led to some design changes:

ikPrivEnc, ikPub, spkPrivEnc,
spkPub, opkPrivEnc, opkPub

—

secretKeyD2 = PW_HASH(alicePass)
ikPrivDec = DEC(secretKeyD2, ikPrivEnc)
spkPrivDec = DEC(secretKeyD2, spkPrivEnc)
opkPrivDec = DEC(secretKeyD2, opkPrivEnc)

—

Refreshing Identity Keys. In scenario 1, we specified that
the identity private keys may be compromised. In the signal
protocol, Alice and Bob may recover from such a compro-
mise by reinstalling the app. In the initial design of the Stick
protocol, a user would have the same IK for every phase. To
mitigate this, the Stick protocol introduced refreshing identity
keys as discussed in section 3.2.7.

Double-Hashing. In the initial design of the Stick protocol,
the user traditionally sends their plaintext password to the
server to verify it. This presents multiple threats to the user,
as the password is used for authentication, as well as in
encrypting the private keys. Since in our threat model we
are assuming an untrusted network, therefore the user’s
password should never leave the device, as this can make
it vulnerable to attacks by eavesdroppers or even the server
itself (in scenario 3). As such, the Stick protocol introduced
the double-hashing technique discussed in section 3.2.8.

5 IMPLEMENTATION

This section gives a brief overview of the Stick protocol’s
implementation [17]. The Stick protocol was implemented
to be a superset to Signal protocol making the Stick protocol
logic external to Signal protocol. This creates well-defined
borders for the Stick protocol when trying to verify it. Also,
it allows the Signal protocol to be used in parallel with the
Stick protocol, from just the Stick protocol library.

A common trend we noticed across the Signal protocol’s
Github issues across their 3 repositories [18], is that many
developers struggle to get started with the Signal protocol,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

knows private aChainKeyX
knows private aSigPrivX
aSigPubX = GraSigPrivX

leaks aChainKeyX

knows private aChainKeyY
knows private aSigPrivy
aSigPubY = GraSigPrivy

generates postY

aChainKeyY2, messageKeyY = HKDF(

MAC (aChainKeyY, nil), nil, nil)
postYEnc = ENC(messageKeyY, postY)
postYSigned = SIGN(aSigPrivY, postYEnc)

[aSigPubY], postYEnc, postYSigned

knows private aChainKeyY

aChainKeyY2B, messageKeyYB = HKDF(

MAC (aChainKeyY, nil), nil, nil)

_ = SIGNVERIF(aSigPubY, postYEnc,
postYSigned)?

postYDec = DEC(messageKeyYB, postYEnc)

I

Fig. 7. Sticky Session Backward Secrecy Verifpal Model

as the Signal protocol does not provide a detailed imple-
mentation documentation. Furthermore, the Signal protocol
leaves a lot of logic and interfaces for the developer to imple-
ment themselves. While this creates some flexibility, it can
be challenging and incomprehensible for many developers
for basic implementation of E2EE in their app. In addition,
this can be prone to errors, such as storing private keys in
an insecure manner on the user’s device — which can cause
a catastrophic compromise on security. The stick protocol
was implemented to be a fully comprehensive Android
and iOS library (rather than just a Java and C library)
which can be incorporated into an SNP application, and
provide E2EE using re-establishable sticky sessions, with as
low development overhead as possible. The Stick protocol
implementation is composed of 4 libraries: Android library,
iOS library, Server library and Client handlers library.

The Android library and the iOS library are the 2 main
libraries of the Stick protocol. They have most of the logic
needed on the client-side. To make the Stick protocol im-
plementation comprehensive both on the frontend and the
backend, the implementation includes a server library in
Python for Django. Moreover, the implementation features a
client handlers library in JavaScript which contains common
handler methods needed for the Stick protocol client-side.

6 PERFORMANCE EVALUATION

In this section, we want to test whether using the Stick
protocol in an SNP app would compromise its usability or
performance, compared to not having E2EE.

6.1 Experimental Setup

We aim to make our experiment as realistic as possible.
The Stick protocol is already being used for an SNP app
called StickNet available on the App Store and the Play Store

10

[19]. This study uses StickNet for evaluation. To ensure the
implementation runs smoothly on a wide range of devices,
it was tested on 2 average devices: an iOS device - iPhone
6s, and an Android device - Samsung Galaxy Note 10 Lite,
with benchmarks of 531 and 533 respectively (putting into
perspective, that’s only 1/3 of the top-ranking phone [20]).

The devices were communicating with a remote server
running Amazon Linux 2 and connected to a PostgreSQL
database. The backend server is implemented in Python
3.8. The application running on the mobile devices is in
release mode. All tests were done under the same Internet
conditions. Each experiment was repeated 20 times on each
device, then the average was taken.

6.2 Sharing Content

In the first experiment, we aim to measure the overhead
when sharing content using the Stick protocol in comparison
to not using E2EE. There are 3 cases to test:

e Case 0: no E2EE being used (1 round).

e Case 1: Stick protocol E2EE (2 rounds) - the user makes
a request to the server to get the stickld, then encrypts
and shares the content. No extra SKs to be shared.

o Case 2: Stick protocol E2EE (4 rounds, less frequent) -
the user needs to request the server for the stickld of a
new sticky session, plus a list of users (2 in this case)
to share the SK with. The user will need to fetch PKBs,
initialize new pairwise sessions, initialize a new sticky
session, encrypt the SKs and upload them. Then, the
user can encrypt and share the content.

For each case, a user is trying to share 10 photos (~25MB)
and a 20 seconds video (=40MB). To keep the measurements
as realistic as possible, the tests include standard media pre-
processing such as: compression and creating thumbnails.
Graph A in Fig. 8 shows the results. Sharing 10 photos
with no E2EE took ~3.5s. Introducing E2EE using the Stick
protocol in case 1 took extra ~0.3s. Stick protocol worst case
took ~4.3s (<1 extra second). Sharing a 20 seconds video
with no E2EE took ~28.6s. Stick protocol case 1 took extra
~0.7s. Stick protocol worst case took ~29.7s. Only 1.1 extra
seconds. We can see that the overhead is fractional.

6.3 Receiving Content

In this experiment, we aim to measure the overhead when
receiving content using the Stick protocol in comparison to
not using E2EE. Again, there are 3 cases to test:

e Case 0: no E2EE being used (1 round).

e Case 1: Stick protocol E2EE (1 round) - the user already
has the corresponding sticky session initialized. The
user can download and decrypt the content.

o Case 2: Stick protocol E2EE (2 rounds, less frequent) -
the user needs to fetch the SK from the server, decrypt
it and initialize the sticky session. Then, the user can
download and decrypt the content.

In each case, the user is receiving a photo (=<1MB) and a
video (=5MB). Graph B in Fig. 8 summarizes the results.
Case 0 took ~1.4s and ~3.1s for the photo and the video
respectively. Introducing E2EE using the Stick protocol took
extra ~0.1s only. Stick protocol worst case took ~1.6s and
~3.3s for the photo and the video respectively (=+0.2s). The
overhead of receiving encrypted content is even smaller.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Graph A - Sharing Content

Graph B - Receiving Content

11

Graph C - Reinitializing

30000 | mmm No E2EE
3 Stick Protocol - Case 1 4000
25000 { W Stick Protocol - Case 2

20000 3000

Time (ms)

15000

10000 1500

10 Photos (=25MB)

20 Seconds Video (=40MB)
Content

1 Photo (=1MB)

Fig. 8. Stick Protocol vs No E2EE - Performance Evaluation

6.4 Reinitializing

The only considerable overhead introduced by the Stick
protocol is while recreating the Argon2 hashes from the
password at login time in order to decrypt the private keys.
In this experiment, we aim to measure that overhead. In the
Stick protocol, the default Argon2 parameters are: 4096KiB
memory, 3 iterations, running on 2 threads in id mode.
They provide a balance between security and usability. A
developer can tune these parameters if they wish. We will
test 4 cases: (i) No E2EE, (ii) 25 keys need to be decrypted,
(iii) 50 keys, and (iv) 100 keys. Graph C in Fig. 8 presents
the results. Having no E2EE took about 1.2 seconds to log in.
When introducing E2EE using the Stick protocol, the login
time increases linearly in proportion with the number of
keys. Having 25 keys took ~2.7s, 50 keys took ~5.0s and
100 keys took ~8.9s. This increase can be easily mitigated
by decrypting the latest X keys at login time, and then
decrypting any further keys on demand.

6.5 Storage

This subsection analyzes whether using our protocol in an
SNP imposes considerable storage usage. A user decrypting
a small photo of size IMB (1,048,576 bytes) would need an
extra 80 bytes of space used by the message key (and if
sticky session was not initialized an additional 160 bytes at
max used by PKB and 64 bytes used by SK). That'’s less than
0.0003% extra space. The same goes for the extra data size
of sending or receiving encrypted content. In addition, with
the introduction of the ever-powerful cellular networking
standard 5G, and we already have phones with as big
storage as 1TB, makes the storage overhead even smaller.

6.6 Conclusion

One might think that the Stick protocol causing every
user to have tens or hundreds of keys would have some
computational, networking or storage overhead, but these
experiments have proven otherwise. We can conclude from
these experiments that running the Stick protocol in a real-
world SNP application is feasible with negligible overhead
when sharing and receiving content. The only felt overhead
is at login, which does not need to happen often, and we
can deem such a small overhead acceptable.

7 DISCUSSION

Table 1 compares the privacy and security measures taken
by mainstream SNPs versus an app utilizing the Stick proto-
col. Normally, when a user logs into their SNP account, their

@l No E2EE
3 Stick Protocol - Case 1
W Stick Protocol - Case 2

Time (ms)

20 Seconds Video (=5MB) No E2EE 25 keys 50 Keys 100 Keys

Content

TABLE 1
Mainstream SNPs VS an App Using Stick Protocol

Hidden | Data

App Center Enc.
Facebook
Twitter
LinkedIn
Instagram

StickProtocol App

Pass

password can be seen by the backend server. In contrast, the
Stick protocol hides the user password using double-hashing.
As for private messaging E2EE, only Facebook supports it
as an opt-in. On the other hand, StickProtocolApp can benefit
from the Signal protocol’s messaging E2EE as the Stick
protocol is built to be a superset to the Signal protocol. Only
StickProtocolApp can support E2EE for the platform content
using sticky sessions. And as a result, the data center will be
fully encrypted as well.

TABLE 2
Signal Protocol Group Messaging (SPGM) VS Stick Protocol
Protocol | Forward Sec. Backward Sec. IK Self-Healing
SPGM —\——\
Stick Yes (up to N) |

Table 2 compares the privacy features of SPGM vs Stick
protocol. Both have perfect forward secrecy. SPGM lacks
backward secrecy, while the Stick protocol provides back-
ward secrecy every N Encryptions at max. SPGM also lacks
IK self-healing, while the Stick protocol can self-heal after
an IK leakage due to its refreshing identity keys feature.

Now, let’s discuss the Stick protocol limitations and fu-
ture work. Tying the user’s private keys with their password
can have some cost, not security-related, but rather UX-
related. Consider the following 3 events: (1) The user forgets
their password. (2) The user loses their device. (3) The
user opted out of using the OS sensitive storage on their
device. These 3 events occurring simultaneously would be
unlikely, however, in the event, the user would be unable
to decrypt their private keys, and as a result, will not be
able to re-establish their encryption sessions. A fix for this
problem is to use a Biometric-Based KDF (BB-KDF) instead
of a Password-Based KDF (PB-KDF). Biometrics are tied to
the user physically (e.g.: fingerprint) making them more
secure than a password as they cannot be guessed, stolen or
forgotten! However, it is not yet possible to use biometrics

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

to derive a key. A KDF expects a discrete input, whereas a
biometric vector is continuous. Also, different devices have
different sensors, which would represent the same biometric
differently. Even so, some research [21] has been conducted
over the past few years on using BB-KDE

Our protocol improves on the current standard of M2M
encryption where there is no post-compromise security, by
having backward secrecy every N Encryptions at max. There
are some papers proposing solutions to have M2M perfect
backward secrecy [6], but they are yet to be implemented
and verified in a real-world app. Furthermore, they are not
applicable in an SNP scenario. The ultimate goal is to have
perfect backward secrecy for a re-establishable session.

In this work, we have successfully verified the Stick
protocol in the symbolic model using Verifpal. A key future
work point would be to verify the Stick protocol using
ProVerif. In addition, the verification process can be further
extended to the computational model using CryptoVerif.

Lastly, the Stick protocol can be extended to areas
other than social networking where E2E encrypted re-
establishable sessions would be useful. This includes IoTs,
health care and banking systems.

8 CONCLUSION

In this work, we proposed an E2EE protocol tailored for
SNPs, based on Signal protocol. This work was an E2E
process of developing the proposed protocol from design
and verification to implementation and evaluation. Our
verification has proved that the proposed protocol is able to
support re-establishable sessions with forward secrecy, and
achieve a form of post-compromise security. In addition, our
evaluation has shown that using our protocol in a real-world
SNP app will not compromise usability or performance.

REFERENCES

[1]].Isaak and M.]J. Hanna, “User data privacy: Facebook, cambridge
analytica, and privacy protection,” Computer, vol. 51, no. 8, pp. 56—
59, 2018.

[2] WhatsApp, “Whatsapp encryption overview,” WhatsApp Inc.,
Menlo Park, CA, Tech. Rep. Revision 3, 2020.

[3] M. Marlinspike and T. Perrin, “The x3dh key agreement protocol,”
Open Whisper Systems, Mountain View, CA, Tech. Rep. Revision
1, 2016.

[4] , “The double ratchet algorithm,” Open Whisper Systems,
Mountain View, CA, Tech. Rep. Revision 1, 2016.

[5] J. Blum, S. Booth, O. Gal, M. Krohn, J. Len, K. Lyons, A. Marce-
done, M. Maxim, M. E. Mou, J. O’Connor et al., “E2e encryption
for zoom meetings,” Zoom Video Commun., Inc., San Jose, CA,
Tech. Rep. Version 2.3.1, 2020.

[6] K.Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner,
“On ends-to-ends encryption: Asynchronous group messaging
with strong secur. guarantees,” in Proc. 2018 ACM SIGSAC Conf.
on Computer and Commun. Secur., 2018, pp. 1802-1819.

[7] A. Barenghi, M. Beretta, A. Di Federico, and G. Pelosi, “Snake:
An end-to-end encrypted online social network,” in 2014 IEEE Intl
Conf on High Performance Comput. and Commun., 2014 IEEE 6th Intl
Symp on Cyberspace Safety and Secur., 2014 IEEE 11th Intl Conf on
Embedded Software and Syst (HPCC, CSS, ICESS), 2014, pp. 763-770.

[8] P.Grassi,]. Fenton, E. Newton, R. Perlner, A. Regenscheid, W. Burr,
J. Richer, N. Lefkovitz, J. Danker, Y.-Y. Choong, K. Greene, and
M. Theofanos, “Digital identity guidelines: authentication and
lifecycle management,” National Institute of Standards and Tech-
nology, Tech. Rep., 2017.

[9] S.]Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia, “De-
cent: A decentralized architecture for enforcing privacy in online
social networks,” in 2012 IEEE Int. Conf. on Pervasive Comput. and
Commun. Workshops, 2012, pp. 326-332.

12

[10] A. Shakimov, H. Lim, R. Céceres, L. P. Cox, K. Li, D. Liu, and
A. Varshavsky, “Vis-a-vis: Privacy-preserving online social net-
working via virtual individual servers,” in 2011 Third Int. Conf.
on Communication Systems and Networks, 2011, pp. 1-10.

[11] D. Liu, A. Shakimov, R. Céceres, A. Varshavsky, and L. P. Cox,
“Confidant: protecting osn data without locking it up,” in ACM/I-
FIP/USENIX Int. Conf. on Distributed Systems Platforms and Open
Distributed Processing. Springer, 2011, pp. 61-80.

[12] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: new gener-
ation of memory-hard functions for password hashing and other
applications,” in 2016 IEEE European Symposium on Secur. and
Privacy (EuroS&P). 1EEE, 2016, pp. 292-302.

[13] Apple, “Keychain services,” [online] Available at:
https://developer.apple.com/documentation/security /
keychain_services/, 2021.

[14] N. Kobeissi, G. Nicolas, and M. Tiwari, “Verifpal: Cryptographic
protocol analysis for the real world,” in Int. Conf. on Cryptology in
India. Springer, 2020, pp. 151-202.

[15] D. Dolev and A. Yao, “On the secur. of public key protocols,” IEEE
Trans. on information theory, vol. 29, no. 2, pp. 198-208, 1983.

[16] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Ste-
bila, “A formal security analysis of the signal messaging protocol,”
Journal of Cryptology, vol. 33, no. 4, pp. 1914-1983, 2020.

[17] StickNet, “stick-protocol,” [online] Available: https://github.
com/sticknet/stick-protocol, 2021.

[18] SignalApp, “libsignal-protocol-java,” [online] Available: https://
github.com/signalapp/libsignal-protocol-java, 2019.

[19] StickNet, [online] Available at: https:/ /www.sticknet.org/, 2021.

[20] Geekbench, “Mobile benchmarks,” [online] Available: https://
browser.geekbench.com/mobile-benchmarks, 2021.

[21] M. Seo, J. H. Park, Y. Kim, S. Cho, D. H. Lee, and J. Y. Hwang,
“Construction of a new biometric-based key derivation function
and its application,” Secur. and Commun. Networks, vol. 2018.

Omar Basem received the Bachelor of Sci-
ence honours degree in Computer Science from
Heriot-Watt University, United Kingdom. Since
2018, he has been working on creating StickNet
— a fully end-to-end encrypted social network
platform running the Stick protocol, and has
been released on July 2021. His research inter-
ests include security protocols, formal verifica-
tion and applied cryptography.

Abrar Ullah received his PhD Computer Sci-
ence from the University of Hertfordshire, United
Kingdom in 2017. In 2002, he worked as a lec-
turer at the University of Peshawar. In 2011,
he joined Cardiff University as Senior Systems
Analyst. In 2017, He worked as a lecturer at
Cardiff Metropolitan University. He joined Heriot-
watt University in 2019. His research interests
include information security, usable security, au-
thentication and access control, software engi-
neering and machine learning for security.

Hani Ragab Hassen obtained his PhD from the
University of Technology of Compiegne, France
in 2007. He had several security-related roles,
including security architect, before joining the
University of Kent, United Kingdom, as a lecturer
in Information Security. He joined Heriot-Watt
University in 2015 where he is the director of
the Institute of Applied Information Security. His
research interests include security data science,
access control systems, blockchains, P2P and
secure group communications.

https://developer.apple.com/documentation/security/keychain_services/
https://developer.apple.com/documentation/security/keychain_services/
https://github.com/sticknet/stick-protocol
https://github.com/sticknet/stick-protocol
https://github.com/signalapp/libsignal-protocol-java
https://github.com/signalapp/libsignal-protocol-java
https://www.sticknet.org/
https://browser.geekbench.com/mobile-benchmarks
https://browser.geekbench.com/mobile-benchmarks

